

Modelling fracture risk in topseal units

Michael Welch Juan Michael Sargado Danish Offshore Technology Centre

DTU Risk: Leakage through fractures in topseal

There is a risk of CO2 leakage through the topseal, due to:

- Existing natural fractures which cut through the topseal
- Hydraulic fractures, driven by fluid pressure due to CO2 injection

DTU Risk: Leakage through fractures in topseal

Fractures are unlikely to nucleate within the topseal, because:

- Good topseal units are ductile they have high horizontal stress
- Good topseal units have low permeability – so their fluid pressure does not change significantly when fluids are injected into the reservoir

However fractures can nucleate in the reservoir and propagate upwards into the topseal

DTU Risk: Leakage through fractures in topseal

Fractures are unlikely to nucleate within the topseal, because:

- Good topseal units are ductile they have high horizontal stress
- Good topseal units have low permeability – so their fluid pressure does not change significantly when fluids are injected into the reservoir

However fractures can nucleate in the reservoir and propagate upwards into the topseal

DTU Modelling fracture propagation into topseal

- We have already developed an algorithm to model natural fracture propagation from a stiff reservoir into a compliant topseal, based on Linear Elastic Fracture Mechanics (LEFM)
- This is based on the energy release rate. The fracture propagation rate is dependent on the energy release rate / the crack surface energy of the rock
- The energy release rate as the fracture propagates into the topseal can be split into two components:
	- A base component, proportional to the rock stiffness and fracture length
	- A boundary component due to the mechanical interface

Modelling fracture propagation into topseal

- The energy release rate as the fracture propagates into the topseal can be split into two components:
	- A base component, proportional to the rock stiffness and fracture length
	- A boundary component due to the mechanical interface

DTU

Modelling fracture propagation into topseal

- The energy release rate as the fracture propagates into the topseal can be split into two components:
	- A base component, proportional to the rock stiffness and fracture length
	- A boundary component due to the mechanical interface

DTU

Modelling fracture propagation into topseal \overrightarrow{u}

DTU

DTU Modelling fracture propagation into topseal

- As a fracture reaches the top of the reservoir, it may either:
	- Propagate immediately into the topseal – no effective mechanical boundary
	- Arrest temporarily at the mechanical boundary
	- Arrest permanently at the mechanical boundary

DTU Controls on fracture propagation into topseal

The fracture is more likely to propagate into the topseal if

- The reservoir layer is thin
- The subcritical index of the topseal is low
- The crack surface energy in the topseal is low

Other factors include:

- Strain rate
- Stiffness contrast across the boundary

DTU Controls on fracture propagation into topseal

The fracture is more likely to propagate into the topseal if

- The reservoir layer is thin
- The subcritical index of the topseal is low
- The crack surface energy in the topseal is low

Other factors include:

- Strain rate
- Stiffness contrast across the boundary

DTU Natural vs hydraulic fractures

- These models assume uniform strain-driven fractures. This is the case for natural fractures.
- For hydraulic fractures, the driving stress will be uniform.
- We have not developed a model for the boundary effect in this case.
- However we can calculate the base component energy release rate as the fracture propagates into the topseal.

DTU Hydraulic fracture propagation into topseal

- In general, the energy release rate drops rapidly as the fracture propagates into the topseal, if the topseal is very ductile (horizontal stress is high)
- When the topseal is more brittle, the fracture can propagate further
- More work is needed to constrain the algorithm, and to add the boundary effect

- We have already released a Petrel plug-in to build fracture models within the reservoir
- This is available as open source software from <https://gitlab.gbar.dtu.dk/offshore/dfm-generator>
- This can also be coupled with Visage and Eclipse to model fluid-driven fractures in the reservoir
- We have developed a version to model natural fracture propagation into the topseal; however this has not yet been released
- We would like to develop a version to model hydraulic fracture propagation into the topseal; however this will require further work

Please come and see the software demo in the poster room