


DTU Offshore4 June 2024 Modelling fracture risk in topseal units

Modelling fracture risk in 
topseal units

Michael Welch

Juan Michael Sargado

Danish Offshore Technology Centre

2



DTU Offshore4 June 2024 Modelling fracture risk in topseal units

Risk: Leakage through fractures in topseal

There is a risk of CO2 leakage through the 

topseal, due to:

• Existing natural fractures which cut 

through the topseal

• Hydraulic fractures, driven by fluid 

pressure due to CO2 injection
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Risk: Leakage through fractures in topseal

Fractures are unlikely to nucleate within the 

topseal, because:

• Good topseal units are ductile – they 

have high horizontal stress

• Good topseal units have low permeability 

– so their fluid pressure does not change 

significantly when fluids are injected into 

the reservoir

However fractures can nucleate in the 

reservoir and propagate upwards into the 

topseal
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Risk: Leakage through fractures in topseal

Fractures are unlikely to nucleate within the 

topseal, because:

• Good topseal units are ductile – they 

have high horizontal stress

• Good topseal units have low permeability 

– so their fluid pressure does not change 

significantly when fluids are injected into 
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Modelling fracture propagation into topseal

• We have already developed an algorithm 

to model natural fracture propagation 

from a stiff reservoir into a compliant 

topseal, based on Linear Elastic Fracture 

Mechanics (LEFM)

• This is based on the energy release rate. 

The fracture propagation rate is 

dependent on the energy release rate / 

the crack surface energy of the rock

• The energy release rate as the fracture 

propagates into the topseal can be split 

into two components:

– A base component, proportional to the 

rock stiffness and fracture length

– A boundary component due to the 

mechanical interface
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C: Combined energy release rate

E2/E1=1 E2/E1=0.666666667 E2/E1=0.5 E2/E1=0.25

E2/E1=0.166666667 E2/E1=0.125 E2/E1=0.1 E2/E1=0.083333333

E2/E1=0.071428571 E2/E1=0.02 E2/E1=0.01 E2/E1=1E-99

Tada formula
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Modelling fracture propagation into topseal

• The energy release rate as the fracture 

propagates into the topseal can be split 

into two components:

– A base component, proportional to the 

rock stiffness and fracture length

– A boundary component due to the 
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Modelling fracture propagation into topseal
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Modelling fracture propagation into topseal

• As a fracture reaches the top of 

the reservoir, it may either:

– Propagate immediately into 

the topseal – no effective 

mechanical boundary

– Arrest temporarily at the 

mechanical boundary

– Arrest permanently at the 

mechanical boundary
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Controls on fracture propagation into topseal

The fracture is more likely to propagate into the 

topseal if

• The reservoir layer is thin

• The subcritical index of the topseal is low

• The crack surface energy in the topseal is low

Other factors include:

• Strain rate

• Stiffness contrast across the boundary
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1m thick reservoir

10m thick reservoir
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Natural vs hydraulic fractures

• These models assume uniform strain-driven 

fractures. This is the case for natural fractures.

• For hydraulic fractures, the driving stress will be 

uniform.

• We have not developed a model for the 

boundary effect in this case.

• However we can calculate the base component 

energy release rate as the fracture propagates 

into the topseal.
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Natural strain-driven fractures

Hydraulic (fluid-driven) fractures
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Hydraulic fracture propagation into topseal

• In general, the energy release rate drops rapidly 

as the fracture propagates into the topseal, if the 

topseal is very ductile (horizontal stress is high)

• When the topseal is more brittle, the fracture 

can propagate further

• More work is needed to constrain the algorithm, 

and to add the boundary effect
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Petrel plug-in

• We have already released a Petrel plug-in to 

build fracture models within the reservoir

• This is available as open source software from 

https://gitlab.gbar.dtu.dk/offshore/dfm-generator

• This can also be coupled with Visage and 

Eclipse to model fluid-driven fractures in the 

reservoir

• We have developed a version to model natural 

fracture propagation into the topseal; however 

this has not yet been released

• We would like to develop a version to model 

hydraulic fracture propagation into the topseal; 

however this will require further work
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Please come and see the software demo in the poster room

https://gitlab.gbar.dtu.dk/offshore/dfm-generator

