

CO₂ quality challenges through the CCS value chain

CCS Conference - June 14, 2022

DGC

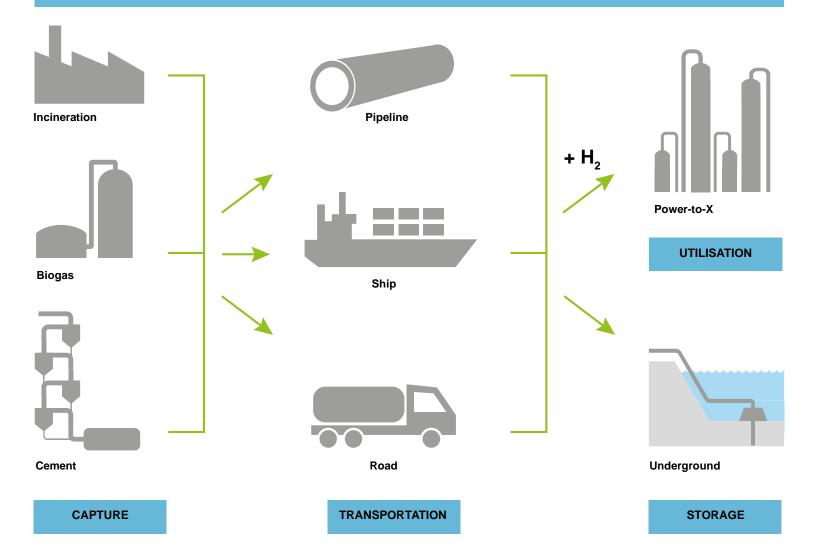
- Danish Gas Technology Center
 - \circ was established in 1988
 - is owned by Evida (86,1%) and Energinet (13,9%) until June 30, 2022 after that Evida (100 %)
- Around 30 employees.
- Turn-over 4.5 million € (2021).
- DGC is a specialized supplier of R&D, consultancy, measurements and assessments.
- Key areas of expertise include green gas (biogas, bio natural gas, hydrogen, CO₂) application, quality, safety and environmental performance.
- DGC holds a laboratory, accredited (EN 17025) to test gas appliances and to make gas analysis.
- Test Centre for Green Gases with stationary and mobile test facilities.
- DGC is EU Notified Body for gas appliances and boiler efficiency.

- 19 partners
- Duration: May 2021-May 2025
- Total cost: 13.9 mill €
- Demonstrating CO₂ capture technology at industrial sites.
- Life-cycle analysis and techno-economic evaluation for CCUS.
- Design of CO₂ clusters and carbon value chains.
- Address socio-economic and political barriers for CCUS.

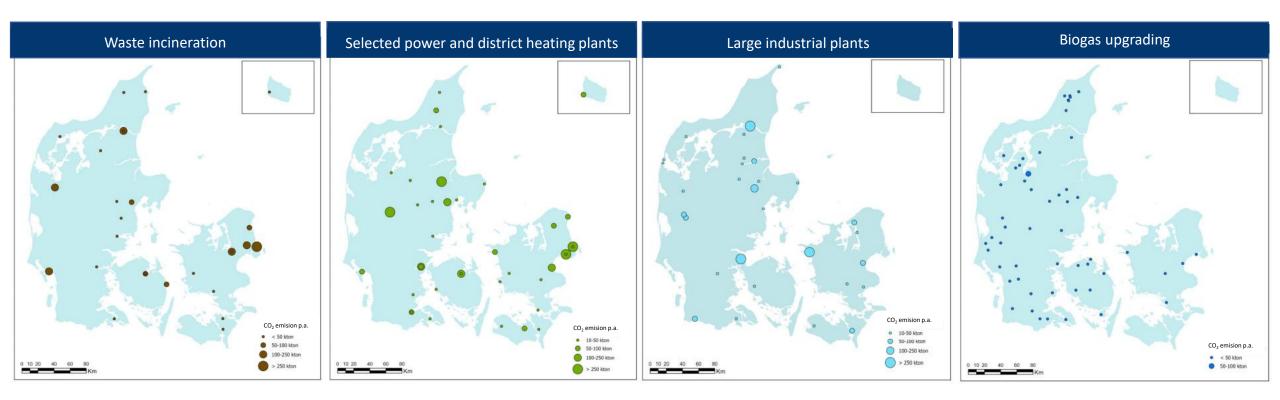
This project has received funding from the European

Union's Horizon 2020 research and Innovation

programme under grant agreement N° 101022484.


https://consencus.eu/

3



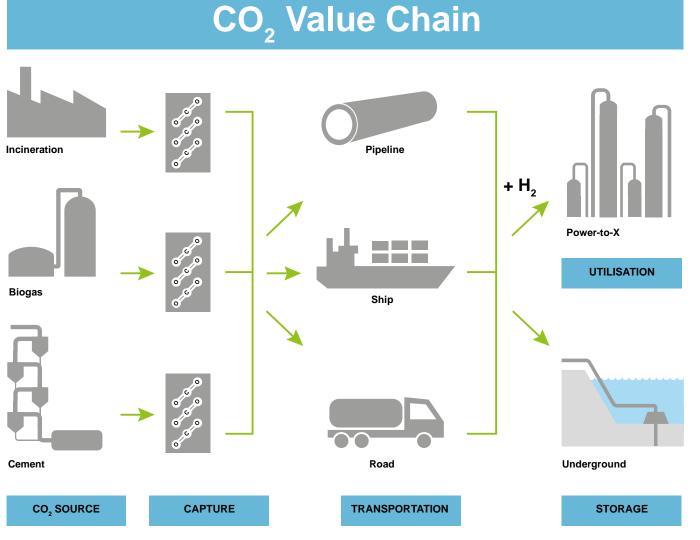
4

CO₂ point sources in Denmark

Ref: <u>ENS</u>

Sources of biogenic CO₂ in Denmark

- Approx. 765,000 ton CO_2 /yr from 36 biogas plants alone.
- Additional CO₂ from biomass, waste incineration and industry
- Evida focuses on transporting CO₂ from sources to ports for CCS or e-fuel production



CO_2 quality: CO_2 is not just CO_2 ...

- Depends on
 - Source
 - CO₂ capture technology
 - Means of transportation
 - Utilization
 - Storage site
- CO₂ quality limits depends on
 - Operating properties
 - Health and safety
 - Material selection
 - Application

CO₂	H ₂ S	Aromatic hydrocarbons	Cd, Tl
H ₂ O	Total sulphur	Formaldehyde	Particulates
H_2	CH ₄	Acetaldehyde	Oil and grease
0 ₂	NO _x	Methanol	Terpenes
N ₂	CO	Ethanol	Nitrosamines
Ar	Amine	HCN	Nitramines
SO _x	NH ₃	Hg	Glycol

.. List not exhaustive

Examples of CCS value chain

	Transported by	Phase	Operating pressure bar g	Operating temperature °C
Northern Light, Equinor/				
Shell/TotalEnergies, Norway, 2019	Ship	Liquid	13-18	Around -26
Porthos,	Onshore and offshore	Gas (onshore)	35 (onshore)	
NL, 2021	pipeline	Dense (offshore)	130 (offshore)	
Fluxys				
Belgium	Onshore pipeline	Gas	20-33	20-40
EOR onshore pipeline,			Typical 137-207	
KinderMorgan, US, 2019	Onshore pipeline	Supercritical	Minimum 89	Max 49

Examples of CCS value chain: CO₂ quality #1

	CO ₂	H ₂ O	H ₂	0,	N ₂	Ar	SO	H₂S	Total sulphur	CH₄	NOx	CO
	%, min	ppm	ppm	ppm	%	%	ppm	ppm	ppm	%	ppm	ppm
Northern Light, Equinor/												
Shell/TotalEnergies, Norway, 2019		30	50	10			10	9			10	100
Porthos												
NL, 2021	95	70	7500	40	2.4	0.4		5	20	1	5	750
Fluxys												
Belgium	95	40	7500	40	2.4	0.4	10	5	20	1	5	750
EOR onshore pipeline,												
KinderMorgan, US, 2019	95	630		10	4			20	35			
Food and beverages application,												
EIGA	99.9	20		30			1	0.1	1		2.5	10

Examples of CCS value chain: CO₂ quality #2

	Amine	NH ₃	Aromatic hydrocarbons	Formal- dehyde	Acetal- dehyde	Methanol	Ethanol	HCN	Hg	Cd, Tl	Non-volatile residue	Non-volatile organic residue
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm w/w	ppm w/w
Northern Light, Equinor/												
Shell/TotalEnergies, Norway, 2019	10	10		20	20				0.03	0.03		
Porthos,												
NL, 2021	1	3	0.1	10 (t	otal aldehyde)	620	20	2				
Fluxys												
Belgium	1	3	0.1	10 (t	otal aldehyde)	620	20	2	0.03	0.03		
EOR onshore pipeline,												
KinderMorgan, US, 2019												
Food and beverages application,												
EIGA		2.5	0.02		0.2	10		0.5			10	5

How to measure and what to measure

- Detection limits will be different from flue gas measurement in online measurement.
- Many impurities can already be measured.
- DGC are developing new methods for more components.

CO,	H_S	Aromatic hydrocarbons	Cd, Tl
H ₂ O	Total sulphur	Formaldehyde	Particulates
H ₂	CH ₄	Acetaldehyde	Oil and grease
0 ₂	NO _x	Methanol	Terpenes
N ₂	CO	Ethanol	Nitrosamines
Ar	Amine	HCN	Nitramines
SO _x	NH ₃	Hg	Glycol

Thank you for your attention

Kate Harboe – <u>kha@dgc.dk</u>

Danish Gas Technology Centre - Dr. Neergaards Vej 5B, DK - 2970 Hørsholm - Tel. +45 2016 9600 - https://ww.dgc.dk/en