

Peter Westh DTU Bioengineering

CO₂ capture - challenges and opportunities from a research perspective.

Does life science have a role to play?

CORC The Novo Nordisk Foundation CO₂ research center

The Novo Nordisk Foundation CO₂ Research Center

https://corc.au.dk/

Key research areas

Chemistry Life Science Systems modeling

Goal:

Develop new fundamental understandings and early technology platforms for capturing and converting CO_2 for storage and utilization.

Research in CORC

Ten groups

Chemistry Life Science	Sys	stems modeling	
Lars Angenent, Eberhard Kar University of Tübingen	is	Matteo Cargnello/Arun Majumdar, Stanford University	0
Kim Daasbjerg, Aarhus University	0	Andree Faaij, TNO Utrecht University	0
Jiwoong Lee, University of Copenhagen	0	Lars Ottosen, Aarhus University	0
Alfred M. Spormann, CORC	0	Troels Skrydstrup, Aarhus University	0
Peter Westh , DTU - Technica University of Denmark	• •	Marta Victoria, Aarhus University	0

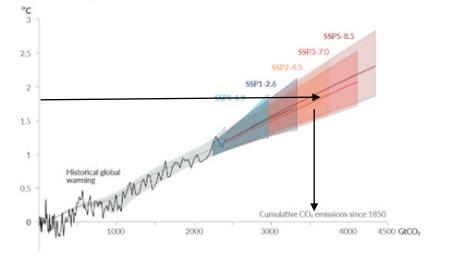
Major research themes

•Direct CO₂ capture from air

-Microbial/chemical ${\bf conversion}$ of ${\rm CO}_2$ to C1-8 compounds

•Homogeneous, heterogeneous, and enzyme catalysis for CO_2 capture and conversions

•Electrochemical reductions of CO_2 and $\text{CO}_2\text{-}$ derived multi-carbon compounds


•Novel carbonate (bio)chemistries for CO₂ capture and conversion

Novo Nordisk Foundation

Fundamental research and technology - with potential for upscaling

Current emissions are around 40 Gt/y

Global surface temperature increase since 1850-1900 (°C) as a function of cumulative CO₂ emissions (GtCO₂)

The average temperature increases by 1°C per 2000 Gt CO₂

Carbon utilization: CO₂ reduction with H₂

Sabatier reaction: $CO_2 + 3H_2 \rightarrow CH_4 + 2H_2O$

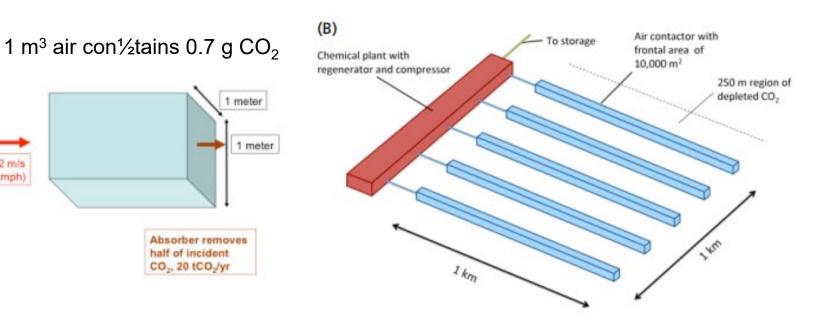
But: $H_2 O \rightarrow H_2 + \frac{1}{2}O_2$ 40 kWh/kg H₂

- Reduction of 3 Gt CO₂ requires 0.15 Gt H₂
- Current annual H_2 production is 0.07 Gt.
- 0.15 Gt H₂ requires 7500 TWh
- Current green production in the US 1500 TWh.
- Global production of plastics 0.4 Gt.

Rojas et al., Technoeconomics and carbon footprint of hydrogenproduction

Scaling challenges: energy and area problems

Direct air capture


Hypothetic facility for 1 Mt CO₂/yr

 $CO_2(air) \longrightarrow CO_2(1 atm),$ $\Delta G \square 30 \ kJ \ / \ mol \ (0.5 \ GJ \ / \ ton)$ Air, 2 m/s

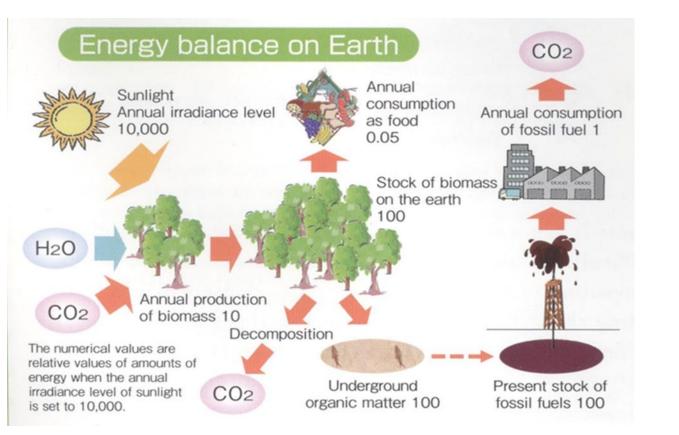
(= 5 mph)

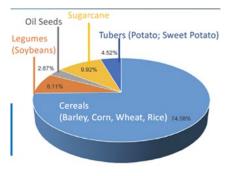
Estimates for industrial processes hover around 5-10 GJ/ton $(1.5-3 \text{ MWh/ton } \text{CO}_2)$

Six systems would be required to compensate for the emissions of a 1 GW coal plant.

APS Report 2011

Title


5

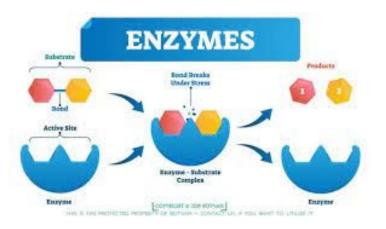

Life science and CCU/CCS

Biomass – e.g. lignocellulose

	2003	2013		
Global Crop Residues (Gton)	3.3	5.0		
Atmospheric CO ₂ Uptake (Gton)	6.1	9.2		
Cost of biomass~ \$60/dry-tonCost of atmospheric CO2 Capture~ \$33/tCO2Carbon value of crop residue is more than its fuel value				

Arun Majumdar,

Soil Man. Clim. Change (2018), 323 Sci. Agric. (2018) 75, 255


6

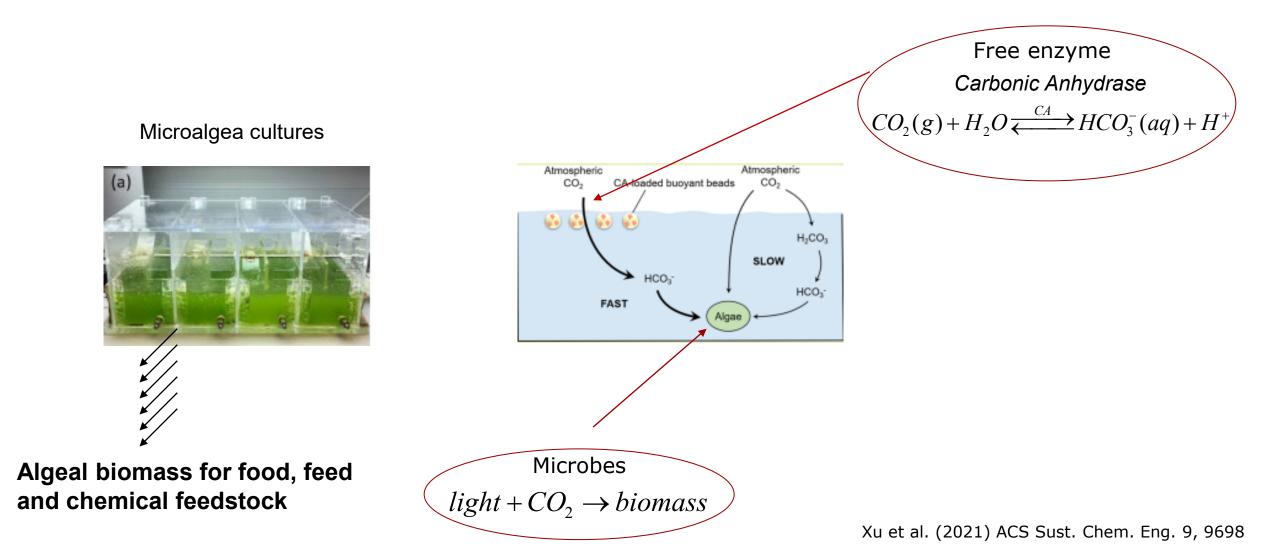
Life science and CCU/CCS

- Extremely efficient catalysts (accelerate processes 10¹⁰-10¹⁵ times)
- Highly specific

DTU

- Moderate price
- Limited stability
- Reduced activity for industrial substrates
 and conditions

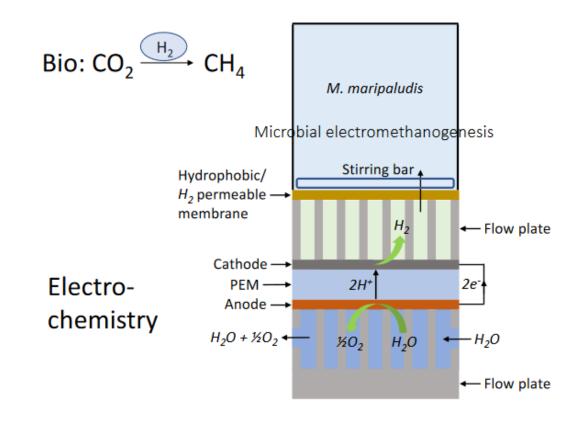
Two paradigms


- <u>Microbes</u>
- Complex, cascade reactions
- Enzymes produced in situ.

Free enzymes

- Simple processes breakdown and one-step conversion
- Industrial production

Targeted production of biomass

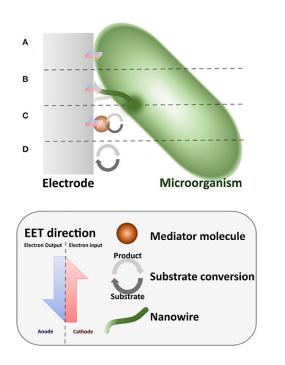


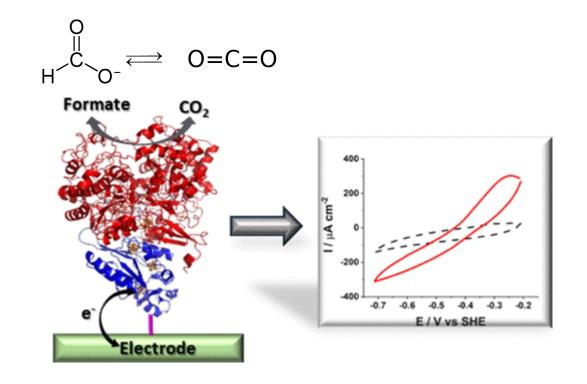
8

Biotransformation between chemical and electric energy

Electromethanogenesis - Integrating chemistry and life science

Spormann, Daasberg, Angenent

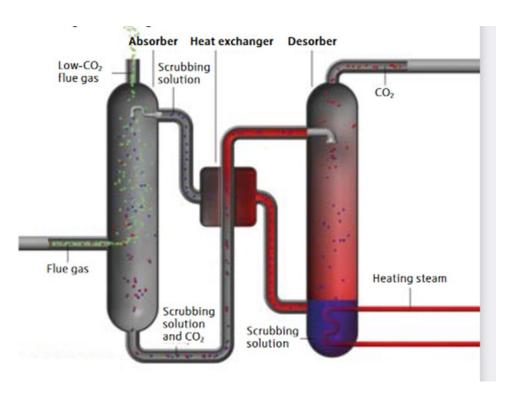

9



Microbial approach

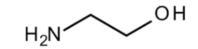
Free enzyme approach

Extracellular electron transfer (EET)

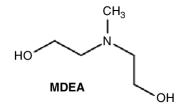


Malmagro (2021) ACS Appl. Mater. Interf. 13, 11891

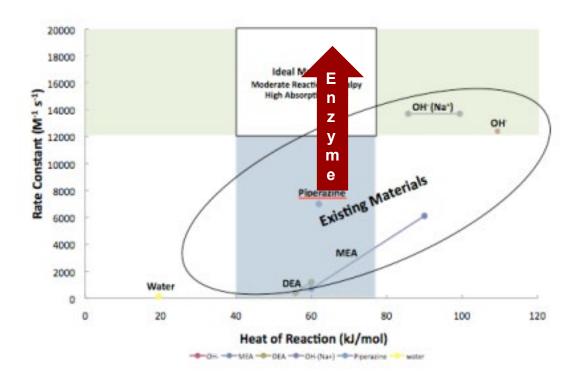
Hernandez & Osma (2020) Front. Environ. Sci., 12


Enzyme assisted carbon capture CO₂ scrubbing of flue gas

CO₂ may be absobed and carried by amines.


$$CO_2 + \text{Amine} \xrightarrow{\Delta H \square 0} \text{Carbamate}$$

Typical sorbent MEA binds CO_2 rapidly and tightly (ΔH =-70 kJ/mol).


This provides easy absorbtion, but generates a requirement of high temperatures in the desorber .

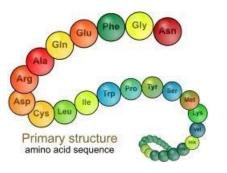
Other sorbents, e.g. MDEA, binds less tightly. This facilitates desorbtion but leads to slow absorption

Scaling of kinetics and thermodynamics

Carbonic Anhydrase (CA)

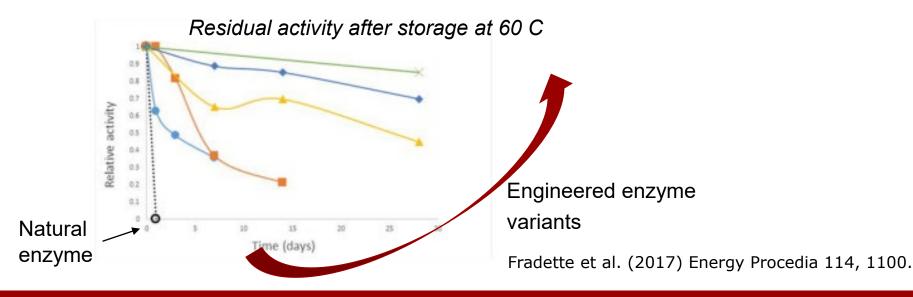
$$CO_2 + H_2O \xrightarrow{CA} HCO_3^- + H^+$$

maximal turnover, k_{cat} around $10^4 - 10^6 \text{ s}^{-1}$

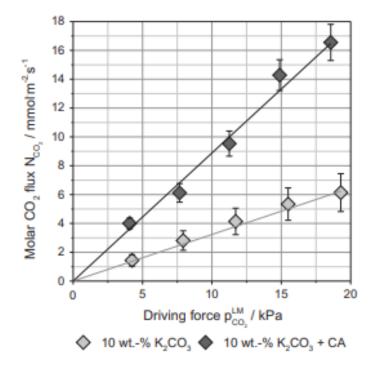


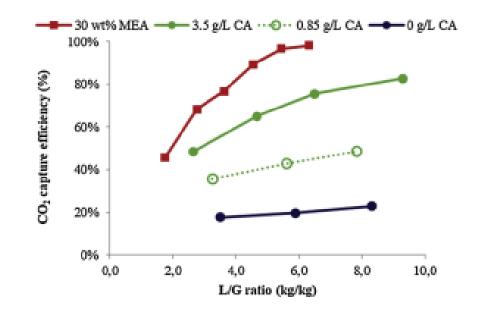
Main challenge: Physical instability of enzymes

(high temperature and pH)


Enzyme engineering

Natural enzyme


Molecular biology Sequence analysis Machine learning Protein science Microbiology Crystallography High-Throughput screens



DTU

Enzyme assisted capture: lab and pilot scale

Kunze et al (2015) Applied Energy 156, 676

Gladis (2019) Int. J. Greenh. Gas Control. 82, 69

Closing remarks

Life science offers promising CCS/CCU technologies.

A range from: From low tech. deposition of lignocellulose over enzyme assisted carbon capture to advanced chemical-electrical transformations

Do these technologies scale to the Gt range? Are Mt technologies relevant?