## Danish Offshore Technology Centre Technology Conference 2024

## Structural integrity of the diatom- and smectite-rich mud from the Nora Formation, Sten-1 well, Danish North Sea

E. Proestakis<sup>a</sup>, R. Weibel<sup>b</sup> K. Dybkjær<sup>b</sup>, F. Mørk<sup>b</sup> I.L. Fabricius<sup>a</sup>, E.S. Rasmussen<sup>b</sup>

<sup>a</sup>Danish Offshore Technology Centre, Technical University of Denmark, Lyngby, Denmark <sup>b</sup>Geological Survey of Denmark and Greenland, Copenhagen, Denmark

Hydrocarbon migration from chalk reservoirs to fine-grained overburden sediments raises concerns about wellbore stability in decommissioning wells. Understanding the petrophysical properties of these formations is essential. By interpreting seismic, well-logging, and petrographic data, we identified diatomrich mud intervals in the Nora Formation of the Sten-1 well. This well represents several wells nearing decommissioning.

We characterized solid composition from 10 cuttings in the diatom- and smectite-rich mud using X-ray diffraction and interpolation. Due to the amorphous nature of diatoms (opal-A), we quantified opal-A and derived porosity using neutron and density logs (Fig. 1). Compositional analysis enabled us to derive the solid phase elastic bulk and shear moduli, and we calculated the saturated-state P-wave modulus which was converted to dry-state using the Iso-frame model.

Our results indicated a Biot coefficient ( $\alpha$ ) log ranging from 0.96 to 0.99, suggesting grain-to-grain electrostatic contact without cementation. Vertical elastic strain ( $\epsilon$ ) calculations showed elevated strain (0.2%) between 1510 to 1600 m msl, indicating potential structural damage and fracturing. Given the matrix is highly impermeable, we are investigating if fractures could facilitate fluid flow.



Fig. 1: Petrophysical properties of the water-saturated Sten-1 well, including a) porosity, b) volumetric solid phase composition, c) saturated- and dry-state P-wave modulus, with bulk and shear moduli derived from compositional analysis and linear combination of mineral moduli, and d) vertical elastic strain calculated from vertical elastic stress ( $\sigma'$ ) and dry-state P-wave modulus. Overburden stress ( $\sigma_t$ ) was calculated using 1.98 g/cm<sup>3</sup> bulk density, and pore pressure (P) assumed equal to mud pressure.







