Offshore Water Toxicity Management

DTU Offshore Technology Conference 2022

DTU

Agenda – Offshore Water Toxicity Management

Hosts: Simon Ivar Andersen and Charlotte Lassen, Danish Offshore Technology Center

- 10:00 Welcome / setting the scene
- 10:05 Where is legislation to protect the marine environment heading? Mathijs Smit, Shell Global Solutions

How toxic is toxic?

- **10:30** (I) Toxic components in discharged water Karen Louise Feilberg, Danish Offshore Technology Center
- **10:50** (II) Intelligent Testing Strategy Lars Michael Skjolding, DTU Sustain
- 11:10 (III) Marine biodegradation of discharged chemical components Philipp Mayer and Mette T. Møller, DTU Sustain
- 11:30 Enabling PW reinjection in chalk

Benjamin Lorenzen, IKM Ocean Team Hamid Nick, Danish Offshore Technology Center

Title

Where is legislation to protect the marine environment heading?

Mathijs Smit, Shell Global Solutions

Management of offshore discharges and chemicals use

Where is legislation to protect the marine environment heading?

Mathijs Smit – Shell Global Solutions / IOGP

Content

- Introduction to IOGP
- Global regulatory concepts for marine discharges
- Risk-based assessment (RBA) approaches
- Developments in the OSPAR region
- Energy Transition and Water Stewardship

Introduction to IOGP

- The International Association of Oil & Gas Producers (IOGP) is the principal safety and sustainability association for the global upstream industry
- IOGP's 80+ Members produce 40% of the world's oil and gas
- IOGP brings together members to identify and share knowledge and good practices in health, safety, the environment, security and social responsibility

IOGP Environment Committee

- One of the founding Standing Committees in IOGP
 - Develop and promote good environmental practice
 - Sponsor and undertake scientific research to develop appropriate risk management approaches
 - Proactively develop and advocate the industry's position in response to changing regulations
- Focus areas: environmental performance reporting, underwater sound, biodiversity and ecosystem services, regional policy, methane, energy efficiency, produced water, environmental monitoring

Report 629: Environmental sampling and monitoring from airborne and satellite remote sensing

Report 633: Risk Based Assessment of Offshore Produced Water Discharges

Report 254: Environmental Management in the Upstream Oil and Gas Industry

Report 630: Comparison of Methane Reporting Requirements

Report 601R: Microplastics in the Upstream Oil & Gas Industry.

Report 602: Environmental effects and regulation of offshore drill cuttings discharges

Historical Development of Global Offshore PW Management

end-of-pipe standards

standards

Global overview of OIW Levels for offshore PW management

End-of-pipe limit values

Límites permisibles				
Descarga a Cuerpo Receptor (mg/L)				
Parámetros	Agua dulce, incluyendo humedales	Aguas costeras y estuarios		
Hidrocarburos Totales del Petróleo	10	10		
Sólidos Disueltos Totales	500	32,000		
Fenol	0.1	0.06		
Sulfuro de hidrógeno	0.002	0.002		
Hierro	1	0.05		
Etilbenceno	0.1	0.5		
Benceno	0.05	0.005		
Tolueno	0.2	0.06		
Hidrocarburos Aromáticos Policíclicos	-	0.1		
Aluminio	0.05	0.2		
Bario	0.01	0.5		
Boro	-	0.009		
Cloruros	250	-		
Cromo	0.05	0.01		
Manganeso	-	0.02		
Acenafteno	0.02	0.01		
Vanadio	0.5	0.5		
Conductividad Específica, S/m	0.75	0.75		

			PERMISSIBL	e Levels				
		Water Pollutants	Receiving Environment					
	No.	Parameters or Substances	Inland Surface Water	Coastal Nearshore	Marine Offshore	Environmentally Sensitive Areas and/or Groundwate		
I			Levels or Conditions					
	1.	Temperature	35	40	45	NIAA		
	2.	Dissolved Oxygen	<4	<4	<4	<4		
	3.	Hydrogenion (pH)	6-9	6-9	6-9	6-9		
	4.	Five day Biological Oxygen Demand (BOD ₅ at 20°C)	30	50	100	10		
	5.	Chemical Oxygen Demand (COD)	250	250	250	60		
	6.	Total Suspended Solids (TSS)	50	150	200	15		
	7.	Total Oil and Grease (TO&G) or n-Hexane Extractable\ Material (HEM)	10	15	100	No release		
	8.	Ammoniacal Nitrogen (as NH ₃ -N)	10	10	10	0.1		
	9.	Total Phosphorus (as P)	5	5	5	0.1		
	10.	Sulphide (as H ₂ S)	1	1	1	0.2		
	11.	Chloride (as Cl ⁻)	250	NIAA	NIAA	NIAA		
	12.	Total Residual Chlorine (as Cl ₂)	1	1	2	0.2		
	13.	Dissolved Hexavalent Chromium (Cr ⁶⁺)	0.1	0.1	0.1	0.01		
	14.	Total Chromium (Cr)	0.5	0.5	0.5	0.1		
	15.	Dissolved Iron (Fe)	3.5	3.5	3.5	1.0		
	16.	Total Petroleum Hydrocarbons (TPH)	25	40	80	No release		
	17.	Total Nickel (Ni)	0.5	0.5	0.5	0.5		
	18.	Total Copper (Cu)	0.5	0.5	0.5	0.01		
	19.	Total Zinc (Zn)	2	2	2	0.1		
	20.	Total Arsenic (As)	0.1	0.1	0.1	0.01		
	21.	Total Cadmium (Cd)	0.1	0.1	0.1	0.01		
	22.	Total Mercury (Hg)	0.01	0.01	0.01	0.005		
	23.	Total Lead (Pb)	0.1	0.1	0.1	0.05		

Mexico NOM-001-SEMARNAT Trinidad and Tobago Water Pollution Rules

Global Risk-based Approaches

Why considering risk-based approaches?

- Increased effectiveness in assessing and reduction of potential environmental harm
- Not prescriptive: Absence of generic end-of-pipe limits for individual produced water components (although often used in combination with oil in water standards)
- Flexibility to evaluate site-specific discharges on a case-by-case basis using location specific inputs
- > Efforts are scalable to situation; more severe or relaxed as required
- Provides priority of actions
- Accounts for uncertainties
- Can be executed in all phases of development from concept to operations (model based)

Risk-Based Approach Framework

Assessment of (No) Effect Thresholds

- Chemical characterization of PW
- Combines chemical analysis and models
- Compare individual concentrations (after dilution) with established thresholds

- > Determine toxicity of the whole effluent
- Establish (critical) dilution required to reach safe levels
- Compare required dilution with actual dilution

Assessment of Exposure

Higher Tiers

Screening Tiers

Lookup tables (e.g. NPDES)

Table 1: Produced Water Critical Dilutions

Table 1-A: Critical Dilution (Percent Effluent) for Discharges with a Depth Difference Between the						
Discharge Pipe and t	Discharge Pipe and the Sea Floor of Greater than 0 Meters to 4 Meters					
Discharge Rate	Pipe Diameter (inches)					
(bbl/day)	>0" to 5"	>5'' to 7''	>7" to 9"	>9'' to	>11" to	>15''
				11"	15''	
0 to 500	0.07	0.20	0.16	0.13	0.10	0.08
501 to 1000	0.16	0.39	0.32	0.26	0.20	0.16
1001 to 2000	0.35	0.35	0.63	0.56	0.40	0.31
2001 to 3000	0.55	0.54	0.94	0.79	0.60	0.47
3001 to 4000	0.89	0.85	0.85	0.85	0.85	0.85
4001 to 5000	1.14	1.09	1.08	1.08	1.08	1.08
5001 to 6000	1.40	1.35	1.30	1.31	1.31	1.31
6001 to 7000	1.66	1.59	1.51	1.53	1.53	1.54
7001 to 8000	1.90	1.83	1.75	1.74	1.73	1.73
8001 to 9000	2.13	2.07	2.00	1.94	1.93	1.94
9001 to 10,000	2.38	2.30	2.21	2.13	2.13	2.14
10,001 to 15,000	3.15	3.39	3.28	3.18	3.04	3.04
15,001 to 20,000	4.34	4.39	4.25	4.15	3.83	3.92
20,001 to 25,000	5.14	5.43	5.20	5.17	4.77	4.46
25,001 to 35,000	6.36	7.18	7.18	6.86	6.56	5.96
35,001 to 50,000	7.29	8.91	9.44	9.20	8.62	8.03
50,001 to 75,000	8.33	10.52	11.72	12.22	11.34	10.90

Analytical model (2D steady-state)

e.g. CORMIX (3D steady-state)

e.g. DREAM, MIKE (3D – time variable)

Whole Effluent Approach US – Gulf of Mexico

Produced Water Management - Gulf of Mexico

- EPA Oil and Gas Extraction Effluent Guidelines and Standards (1979 2016):
- No discharge of produced water to coastal zones (< 3 nm)
- Oil and Grease: 29 mg/L (monthly average) 42 mg/L (daily max)
- Best Available Technology (BAT) or Best Practicable Technology (BPT)
- Monitoring requirements:
 - Flow
 - Toxicity (input to RBA)
 - Oil and Grease
 - Visual sheens

Toxicity Testing and Critical Dilution

Mysid (*Mysidopsis bahia*)

Silverside (Menidia beryllina)

Depth Difference Greater than 19 Meters					
Discharge Rate	Pip e Diameter (in ches)				
(bbl/day)	>0'' to 5''	>5'' to	>7" to 9"	>9'' to	
		7"		11''	
8001 to 9000	0.20	0.20	0.20	0.20	
9001 to 10,000	0.21	0.21	0.21	0.21	
10,001 to	0.39	0.39	0.39	0.39	
15,000					
15,001 to	0.44	0.44	0.44	0.44	
20,000					
20,001 to	0.48	0.48	0.48	0.48	
25,000					
25,001 to	0.55	0.55	0.55	0.55	
35,000					
35,001 to	0.64	0.64	0.64	0.65	
50,000					
50,001 to	1.32	1.33	1.32	1.30	
75,000					

Norwegian Zero Harmful Discharge Approach

Exposure and Risk Characterisation

Case 3

OSPAR's recommendation for a risk-based approach to the management of produced water discharges from offshore installations

Produced water management – OSPAR

- 1978 > Provisional standard for dispersed oil of 40
- 1988 > 40 mg/L fixed for all installations
- 2001 > 30 mg/l maximum monthly average concentration to be achieved by 1 January 2007
 - 15% reduction of oil in produced water discharged in the year 2006 compared to 2000
 - \succ Review of BAT every 5 years
 - > Control of use and discharges of offshore chemicals
 - Achieved (2005 2009): 20 % reduction of oil discharges 50 % reduction discharge of hazardous chemicals
- 2012 ➤ Risk-based Assessment of PW

Implementation of OSPAR Recommendation 2012/5 for a Risk-Based Approach to the Management of Produced Water

- 2014 2018
- Assessment of all PW discharges within the OSPAR region:
 - UK: 79 installations
 - NO: 41 installations
 - NL: 78 installations
 - DK: 16 installations
 - ➢ GE: 1 installation

OSPAR Framework for the Management of Discharges

IOGP Guidance 663 Risk-based Assessment Produced Water Discharges

- Principles and fundamentals of produced water risk-based assessment
- Data collection strategies
- Defining a no effect level and addressing uncertainties
- A tiered approach to RBA throughout an asset's lifecycle
- Demonstration of acceptable risk

IOGP Report 633 – RBA of Offshore Produced Water Discharges is available to download from: www.iogp.org/bookstore/

Water Quality in the Energy Transition

Hydrogen

Water Stewardship and ESG: Increased focus on No-harm principles

Summary

- Offshore energy operations involve discharge of water and/or chemicals
- Produced water discharges are highly regulated and approaches vary globally
- Move from end-of-pipe standards to assessments that quantify environmental risks and demonstrate adequate management to mitigate risks
- OSPAR regulatory development needed to increase RBA effectiveness
- Increased focus on water and no-harm principals

2 e? WHE a u When? ΗM HOW? WHEN? What? EB hat? When? nat? When? When? When? When? Why When Why? When? What? a WHEN? **T**? **YOW** \diamond Why?

Title