

De-risking CO₂ injection and storage in Chalk

Rasoul Mokhtari, Hamid Nick, Karen Feilberg

CO₂ Storage – State of the Art Study

Dan field

CO₂ storage in depleted North sea hydrocarbon fields

Benefits

- Available subsurface
 data and reservoirs
 models inherited from
 oil and gas operations
- Existing infrastructure
- Effective caprock
- Social acceptance of offshore sites compared to near shore ones

Drawbacks

- Increased cost for CO₂ transportation offshore
- High number of wells may increase the probability for leaks

3

Storage capacity

Estimates are highly uncertain and calculated using a static approach

Overall capacity dependent on storage mechanisms

- Structural trapping
- Solution trapping
- Capillary trapping
- > Mineral trapping

Storage mechanisms depend on:

- > P, T, reservoir condition
- Chalk wettability and reactivity
- Saturations and compositions of brine and oil

4

This project, focusing on chalk, will address:

- Injectivity
- Trapping efficiency
- Reservoir deformation
- Flow properties
- Upscaling
- · Core to reservoir scale simulations
- Monitoring and acoustic responses

Szulczewski, M.L., et al. "Lifetime of carbon capture and storage as a climate-change mitigation technology." Proceedings of the National Academy of Sciences 109.14 (2012)

Overview

<u>Aim:</u> Investigating CO₂-Brine-Rock interactions in a dynamic condition

Different core plugs

Different injection scenarios

- SC CO₂, Carbonated water,...
- Continuous injection, WAG,...
- Different injection rates
- · ...

Analyses:

- 3D CT imaging before and after experiment
- Imaging during the experiment (An image every 1 minute)
- Effluent samples ion chromatography
- Pressure-rate responses

Current experiment

- Core plug: Stevns Klint
- Flooding scenario: Gorm $\mathsf{FW} \to \mathsf{Carbonated} \ \mathsf{FW}$
- Carbonated FW: 500 cc Gorm FW+ 32gr CO_2 \$\$\$ pH~ 3.2 \$\$
- Test conditions:
 Pressure = 100 bar
 Temperature = room
 Liquid CO₂

Overview

Overview

Thanks for your attention

Any comments or questions?