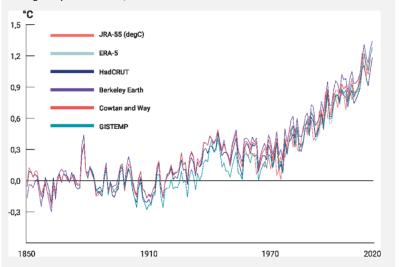
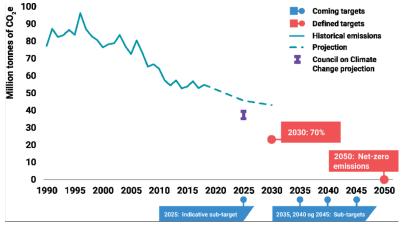




## Detection and Monitoring of CO<sub>2</sub> Leakage in Sub-seabed CCS: Current Status and Beyond


Zongsu Wei, Ph.D., Assistant Professor, Aarhus University Chizoba Ignatius Ezugwu, Ph.D., Postdoc, Aarhus University Mikkel Holmen Andersen, Ph.D., CTO, Unisense A/S Lauge Christensen, Ph.D., Senior Development Physicist, Unisense A/S





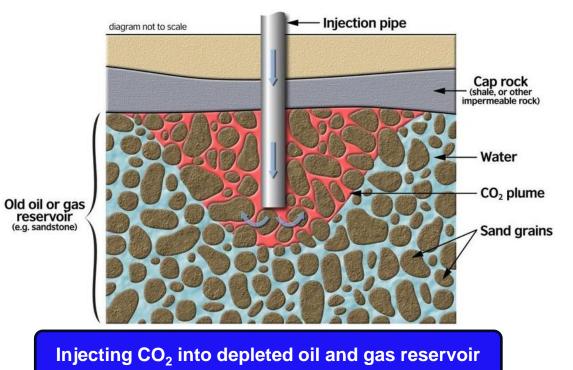

## **Global Warming & Danish Climate Law**

Average temperature trends, 1850-2020



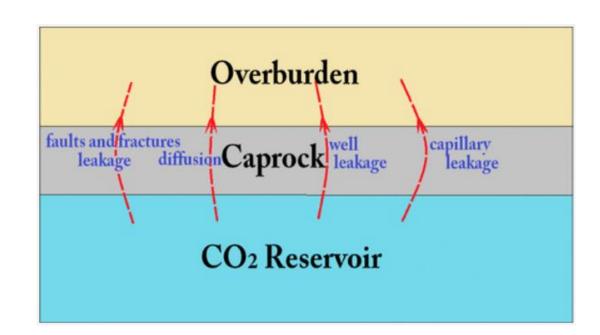







November 29, 2022

Zongsu Wei Assistant Professor




## Danish Oil Reservoir & CO<sub>2</sub> Leakage



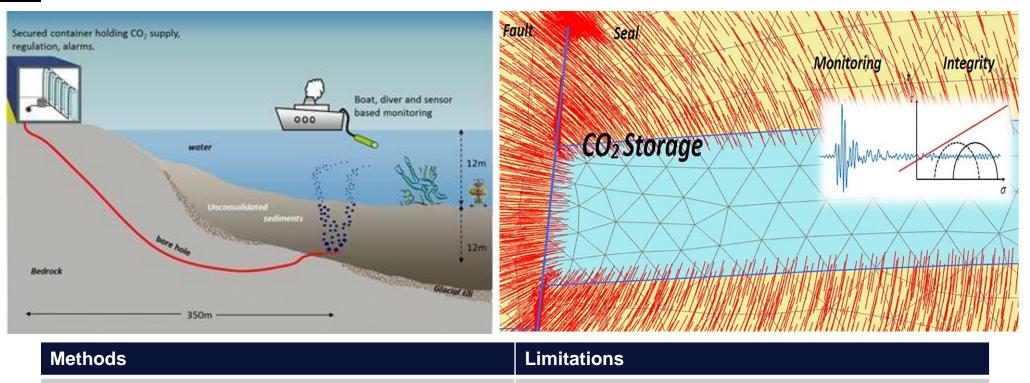
#### Benefits of re-using depleted oil reservoirs

- Existing infrastructure can be re-used for the injection
- Reduce both the cost of CCS and the environmental impact
- High porosity and permeability
- Traps and seals easy!



#### To monitor when injecting CO<sub>2</sub> into the subsurface

- How does the CO<sub>2</sub> plume move in the subsurface reservoir?
- How are potential leaks at the seabed detected?


### The Danish CO<sub>2</sub> storage capacity

- $\checkmark$  16 Gt CO<sub>2</sub> for 11 saline aquifers
- $\checkmark$  0.8 Gt CO<sub>2</sub> for 17 oil fields





# Monitoring of CO<sub>2</sub> Leakage in Sub-seabed



4D seismic and timelapse gravity

- None-engaging
- Local CO<sub>2</sub> concentrations not considered

### The cost of CO<sub>2</sub> monitoring, especially offshore, are still not affordable



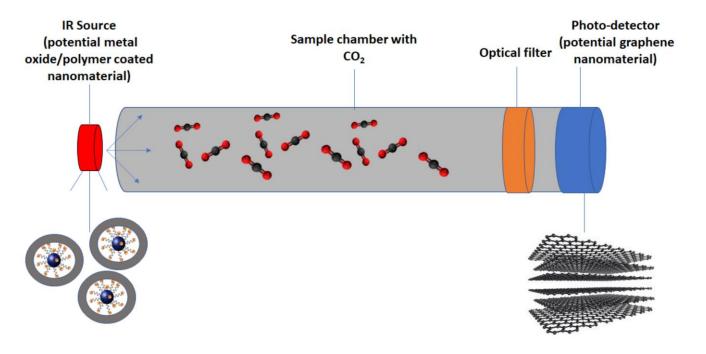


# **Comparison of CO<sub>2</sub> Sensors**

|           | CO <sub>2</sub> Sensors                             | Working principles                                                                                                                                                                                               | Limitations                                                                                                                                                                                                                                    |
|-----------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Optical - | NDIR - Nondispersive<br>infrared                    | Energy absorption characteristics of CO <sub>2</sub> in the infrared region                                                                                                                                      | <ul> <li>Interference from particular matter</li> <li>Bulky and expensive</li> <li>Changes in the level of infrared energy in the system causes a measurement errors in the NDIR sensors</li> <li>Regular calibration with zero gas</li> </ul> |
|           | Fiber Optic - also called<br>optodes                | Contain a chemical sensing layer at the tip<br>of a fiber, which changes optical properties<br>in response to $CO_2$<br>Based on materials that shows absorbance<br>or reflectance changes on exposure to $CO_2$ | <ul> <li>Requires the use of lenses - dust or soot<br/>coating interferes the transmission of light,<br/>therefore it need frequent cleaning</li> </ul>                                                                                        |
|           | Electrochemical/solid-<br>state electrolyte sensors | Uses of MEMS (microelectro-mechanical systems) and nanotechnology for $CO_2$ monitoring.                                                                                                                         | <ul><li>Limited measurement accuracy</li><li>Problem of long-time stability</li></ul>                                                                                                                                                          |

How it works: the chemical reaction produce a change in parameters: *pH, resistance, conductivity, or capacitance* 

Severinghaus type potentiometric sensors, gas chromatography (GC), mass spectrometers






# **Optical CO<sub>2</sub> Sensor**

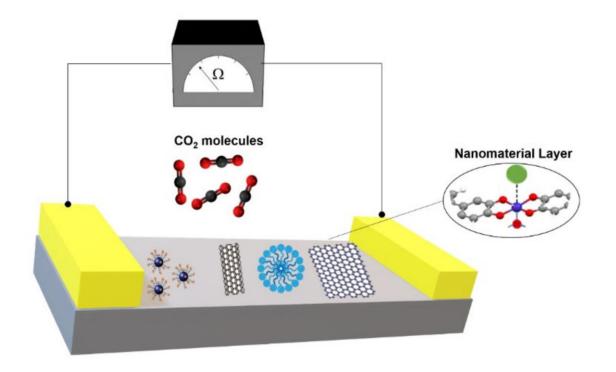
## □ Optical CO<sub>2</sub> sensors

- Nondispersive infrared detectors (NDIR), Fiber optic and Sol-Gel Optical Sensors
- CO<sub>2</sub> absorbs IR at wavelengths of 2.7,
   4.3, and 15 μm
- Some commercially available CO<sub>2</sub> sensors, like NDIR Model No. GMT220 Carbocap.



#### NDIR CO<sub>2</sub> sensing with potential nanomaterial integration






## **Electrochemical CO<sub>2</sub> Sensors**

- **Classification based on** measurement method:
- Potentiometric mode the measured signal is an electromotive force
- Amperometric mode an electric current is recorded
- Conductometric sensors the current-voltage plot is analyzed
- Metal oxide and polymer materials

Limitations

- Inappropriate in potentially flammable environments
- Explosive environment
- Limited accuracy of the sensor and the overall measurement range

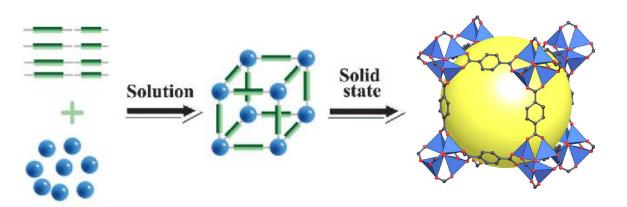


Sensing mechanism of electrochemical CO<sub>2</sub> sensors via different nanomaterials

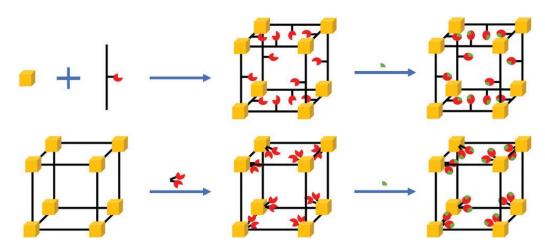




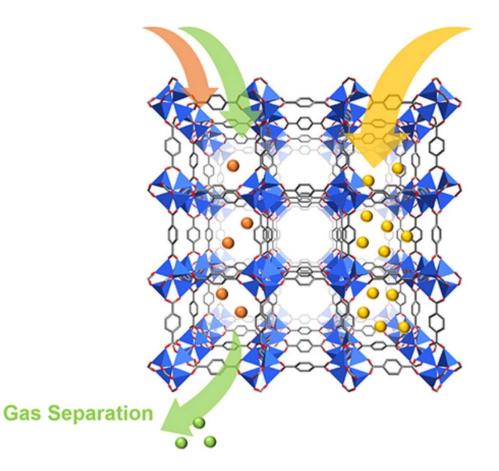
## **Research Gap & Limitations**


- Lack of cost-effective, simple, and reliable monitoring methods
- How to quantify the likelihood for a potential leak to surface through well penetrations
- Difficulty with micro measurements
- Lack of cheap and reliable deploying method for sensors in deep sea
- Excluding the background interferences from seabed, *e.g.*,
   bioactivities producing CO<sub>2</sub>, H<sub>2</sub>S, *etc*.









# **MOFs for Selective CO<sub>2</sub>/H<sub>2</sub>S Separation**



Combination of ligand and metal ion for MOFs synthesis

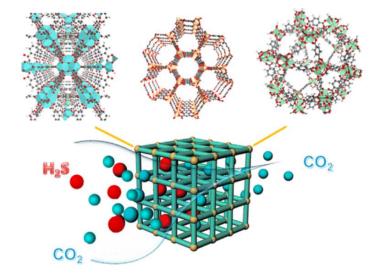


Modifications of MOFs to promote selective CO<sub>2</sub> adsorption

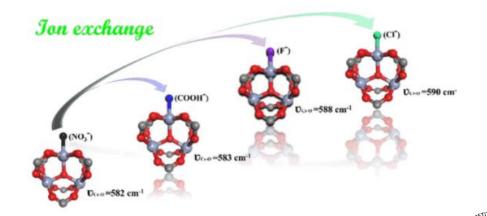







November 29, 2022

# **MOFs for H<sub>2</sub>S Removal**


- Tip of the optical sensor will be composed of silicone membrane blended with MOFs
- The MOFs will selectively absorb H<sub>2</sub>S, allowing only  $CO_2$  to penetrate the sensor
- Also, the MOFs can repel  $H_2S$  and allow  $CO_2$  to pass

### How to achieve these?

- Modulating the pore size of the MOFs for selective \*  $H_2S/CO_2$  separation
- Ligand functionalization \*\*
- \*\* Tuning the metal clusters

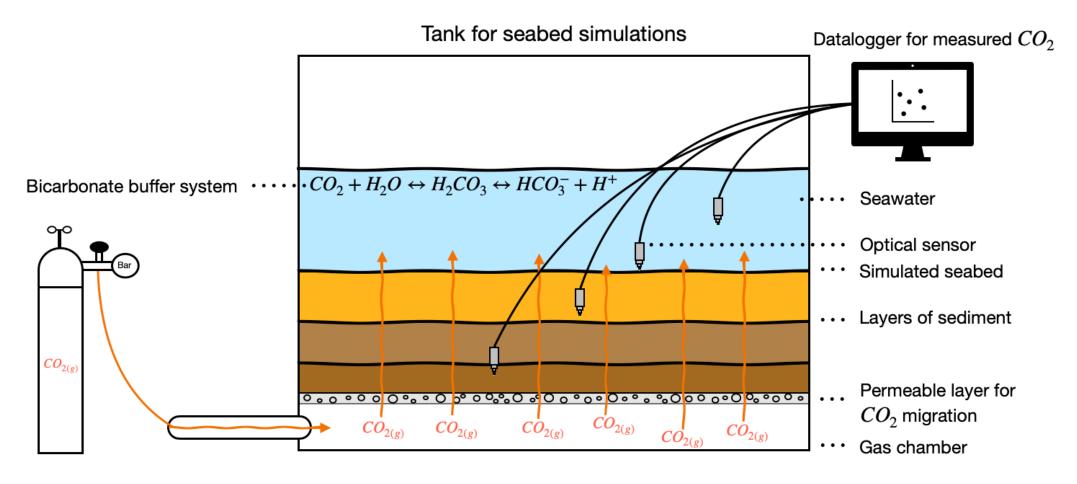


### Size selective separation of molecules





# Why CROSS - Fiber Optic CO<sub>2</sub> Sensor?


- Cheap fabrication due to the few components used
- $\checkmark$  No interference from salty water and H<sub>2</sub>S
- Easy to scale up with no electrical interference generated by the sensors
- Ease of use
- Self-developed digital control platform
- Online control
- ✓ DLR approach more accurate readings and a long-life span for the sensor
- ✓ Seamless solution for CO₂ monitoring at CCS
- $\checkmark$  Applicable to **onshore CCS** where CO<sub>2</sub> leakage monitoring is of importance
- Can be used to monitor CO<sub>2</sub> emission in wastewater treatment, animal farm, industrial manufacturing sites, *etc*.







## **Online CO<sub>2</sub> monitoring in a mimic underwater environment**







## **Unisense and WEI lab**

#### Unisense

- Established in 1998 for developing, constructing, and applying microsensors
- □ The **world-leading** manufacturer of microsensors with over 20 years track record in Denmark
- Manufacture high-performance microsensors for a full range of applications in environmental and medical research

#### WEI Lab

- Many years of experience in developing different physicochemical methods fit for the challenge of green transition in water and energy production
- Track records on many scientific publications (high IF) and US patent relating to water technology and sensor
- Experienced in design, preparation and modifications of MOFs for adsorption and catalytic removal of gaseous pollutants, such as CO<sub>2</sub>, H<sub>2</sub>S, HCHO, *etc*.

## **DTU Offshore**

Danish Offshore Technology Centre



UNISENSE





