Enabling PW reinjection in chalk

Benjamin Lorenzen, IKM Ocean Team Hamid Nick, DTU Offshore

On-site acid production for In-line descaling

Investigating novel methods to manufacture utility chemistry on site - offshore.

Bipolar membrane technology

On-site acid production for In-line descaling

- Seawater is essentially an infinite source of ions for acid and base production.
	- Sulfate SO4²⁻
	- Chlorine Cl⁻
	- Sodium Na⁺
	- Potassium K⁺

- When water is dissociated (split), we produce acid (H⁺) and base (OH-)
	- Sulfuric Acid H_2SO_4
	- Hydrochloric Acid HCl
	- Sodium Hydroxide NaOH
	- Potassium Hydroxide KOH

ELECTRICITY

In-situ acid production + injection

Concept highlights :

- Continuous pH control in the water stream
- Potentially enabling produced water re-injection by controlling scale precipitation
- Base product can be used to scrub H2S
- Eliminate transportation of chemicals

Chemical transportation flow chart

Estimated CO2 emissions for transporting 150 m3 HCL pr. field = 22,851 kg/year

Zero injuries - an overall objective!

Producing HCL - CO2 footprint

Our preliminary calculations indicates the following:

 \blacksquare 150 m3 HCL conventional produced = 216,000 kg CO2 \blacksquare 150 m3 HCL produced in the BMED = 107,000 kg CO2

 \blacksquare = 109,000 kg CO2 difference

DOTC Technology Conference

Enabling produced water reinjection in chalk

Hamed Kermani, Maksim Kurbasov, María Bonto, Karen Feilberg, Hamid Nick

Environmental impact of discharged produced water (PW)

Produced water reinjection

A sustainable alternative to offshore discharge

Produced water reinjection

Challenges

Injectivity impairment

Assessment of the formation damage – Experimental protocol

Core flooding experiments are performed at different ratios of produced water (PW) and sea water (SW) to reveal the formation damage.

Zero in₃₀ Nov 2022 n overall objective!

Injectivity impairment Assessment of the formation damage – Experimental results

Filtered PW (particle size $<$ 7 μ m) PW samples after degasser

Experiment #1 – Core flood Experiment #2 – Mini core flood Filtered PW (particle size $< 7 \mu m$) PW samples after degasser

Injectivity impairment

Assessment of the formation damage – Experimental results

Organics Inorganics

Restoring the injectivity

Screening inorganic

- Thermodynamic modelling
- Different PW/SW ratios and H_2S spent scavenger concentrations

precipitates **Chemical solution Performance of**
precipitates **Chemical solution** chemical treatm

- Scale inhibitor
- Scale inhibitor + acid
- Chelating agents

- Experimental assessment of scale inhibitor efficiency
- Theoretical assessment of acid treatment
- Theoretical assessment of chelating agents efficiency

Restoring the injectivity

Screening of inorganic precipitates

- Spent H_2S scavenger:
	- **has a high environmental footprint**
	- **E** can be mixed with PW and re-injected
	- \blacksquare increases the pH of PW, promoting scaling
	- \blacksquare Only the effect of pH variation induced by the scavenger is investigation

Other scales identified: BaSO₄, SrSO₄, FeS, FeS₂, Fe₂O₃, FeOOH

Restoring the injectivity Chemical solution – Commercial scale inhibitor

- The efficiency of the scale inhibitor increases is improved by mixing PW with SW
- The efficiency of the scale inhibitor decreases at increasing H_2S spent scavenger concentrations
- The scale inhibitor is not as efficient against Fe-based scales
- The chemistry of H_2S spent scavenger once introduced to the aqueous phase is not considered

Restoring the injectivity Chemical solution – Scale inhibitor + acid

Scenario 1:CaCO $_3$ removal Scenario 2: CO₃-based scales Scenario 3:CO $_3$ -based scales +CaCO $_3$ particles

Scale inhibitor reduces the amount of HCl (∼ 25%) required to avoid carbonate scales and CaCO₃ particles

Restoring the injectivity

Chemical solution – Chelating agents for Fe-based scales

- Chelating agents prevent the formation of iron (hydr)oxides by binding iron
- Effect of different chelating agents modelled and tested against experimental data
- GLDA is used further because of its biodegradability

Conclusions

- PWRI can reduce the environmental footprint of O&G operations
- Oil particles and inorganic precipitates impaired injectivity during PWRI
- Mixing and reinjecting the H_2S spent scavenger with the PW has environmental benefits but promotes additional scaling
- A combination of acid, scale inhibitor, and chelates is proposed to address the different inorganic precipitates
- A chemical model is under development to assist in designing PWRI operations

Thanks to the presenters Thank you all for listening!

16 June 2022 DTU Offshore Simon Ivar Andersen and Charlotte Lassen Produced Water Management, DTU Offshore