

- are Danish chalk reservoirs suitable for CO₂ storage?

Influence of CO₂ injection on mechanical properties of chalk

Tobias Orlander, DTU Sustain Leonardo T. P.Meireles, DTU Sustain Hann D. Holmslykke, GEUS Frederik P. Ditlevsen, Geo

Danish Offshore Technology Conference 2022

- are Danish chalk reservoirs suitable for CO₂ storage?

- Project overview
 - Geochemical analysis
 - Rock physical analysis
 - Geomechanical analysis
- 1 year project

- Project objective
 - Quantify and describe effects on hydraulic and compaction properties due to calcite dissolution from CO₂ injection and storage in Danish chalk reservoirs.

- are Danish chalk reservoirs suitable for CO₂ storage?

- Geomechanical experiments
 - Combined SC.CO₂ / WAG flooding phases and geomechanical testing mimic the geochemical flooding phases performed at GEUS
 - 5 geomechanical experiments
 - 1 reference test no flooding
 - 2 tests w. flooding in elastic stress
 - + $1 \times SC.CO_2$ and $1 \times WAG w. 3$ cycles
 - 2 tests w. flooding in elasto-plastic stress
 - $1 \times SC.CO_2$ and $1 \times WAG w. 3$ cycles

• How does the mechanical properties of the chalk behave when exposed to super-critical CO₂ and WAG injection cycles?

- are Danish chalk reservoirs suitable for CO₂ storage?

- Geomechanical experiments
 - 2.1: SC.CO₂ flood @ 15MPa eff. axial stress
 - 2.2 : SC.CO₂ flood @ 38MPa eff. axial stress
 - 2.3: 3xWAG @ 38MPa eff. axial stress
 - 3.1: 3xWAG @ 15MPa eff. axial stress
- Geomechanical analysis
 - Strength
 - Evaluate the effect of SC.CO₂ and WAG flooding @ 15MPa vs. Lab. 2.2 and Lab. 2.3 which were flooded @ 38MPa
 - Stiffness
 - Evaluate stiffness change due to ${\rm SC.CO_2}$ and WAG flooding from primary and unloading/reloading phases
 - Additional deformation due to CO₂ flooding / chalk dissolution
 - 2.1 vs. 2.2 & 2.3 vs. 3.1: Additional strain is observed at higher eff. stress?
 - 2.1 vs. 3.1 & 2.2 vs. 2.3: Additional strain is observed from WAG phases?

- are Danish chalk reservoirs suitable for CO₂ storage?

- Geomechanical analysis observations / early indications
 - No detailed analysis of the results is performed yet. Only rough observations.
 - Strength
 - Equal strength for 2.2 and 2.3 which experienced no flooding below pore collapse
 - Higher strength for 2.1 which were flooding only with SC.CO2
 - Minor strength effect for 3.1 which were experienced 3 WAG phases @ 15MPa
 - Stiffness
 - No observed change
 - Additional deformation due to $\rm CO_2$ flooding / chalk dissolution
 - Observation of reloading phase for 2.2 and 2.3 compared to 2.1 and 3.1
 - 2.1 vs. 2.2 & 2.3 vs. 3.1: Additional strain is observed at higher eff. Stress?
 - 2.1 vs. 3.1 & 2.2 vs. 2.3: Additional strain is observed from WAG phases?

- are Danish chalk reservoirs suitable for CO₂ storage?

- Geomechanical analysis observations / early indications
 - No detailed analysis of the results is performed yet. Only rough observations.
 - Additional deformation due to CO₂ flooding / chalk dissolution
 - 2.3: 3xWAG @ 38MPa eff. axial stress
 - 3.1: 3xWAG @ 15MPa eff. axial stress
 - Significant difference in deformation rate during WAG phases @
 15MPa and 38MPa

- are Danish chalk reservoirs suitable for CO₂ storage?
- Evaluations
 - WAG proces is not used in field application
 - However, WAG is a suitable laboratory proces to evaluate how the chalk properties change when exposed to CO2.
 - Need to investigate the scenarios taking place near wellbore and at boundaries between fluids
 - Will there be equilibrium and how fast?
 - How do our evaluations change if/when
 - The porosity increase
 - Specific surface area change
 - Mineralogy change
 - CO₂ is not clean