Modular Maintenance

Kristoffer Sigsgaard, Postdoc Niels Henrik Mortensen, Professor

Why do we perform maintenance?

 Resources and materials

Environment

- Emissions/discharge due to shutdowns
- Transport of personnel and materials
- Failures and accidents

Why maintain? Why is it important?

It is often a combination of cost, safety and environment

The impact of errors on resources

Our background - Where can we smell the money in maintenance

We have built a unique competence on structuring historical large maintenance data sets on complex assets to be used for improving availability and work efficiency

Are we good at Maintenance

Data model - OneView of maintenance activities

Data model Data model - OneView of maintenance activities Environment Asset 40 facilities > 350.000 pieces of 3 industries equipment Data model 10.000 km wirering ntenance process Action/Task Failures 350.000 Orders 49.000 reported failures 1.400.000 tasks 05-12-2022

Configurator

Why this data model

Equipment

 Physical dimension
 Operation dimension

 Asset
 Identify

 Plant
 Identify

 Plant
 Image: Closure

 System
 Image: Closure

How we can navigate in the data model

Data model Data model - OneView of maintenance activities Environment Asset 40 facilities > 350.000 pieces of 3 industries equipment Data model 10.000 km wirering ntenance process Action/Task Failures 350.000 Orders 49.000 reported failures 1.400.000 tasks 05-12-2022

Configurator

Using the configurator for decision-support

So how does this configuration concept work?

Problem

Resources

Ор	erations	Work Center	Components
•	Erect scaffold	MTN-SCAF	
•	Isolate area	PRODTECH	
•	Dismount valve	MTN-MECH	
•	Mount new valve	MTN-MECH	100071214
•	Test / QC	MTN-MECH	
•	Deisolate area	PRODTECH	
•	Dismantle scaffold	MTN-SCAF	
٠	Document work	MTN-MECH	

The configurator!

Data model Data model - OneView of maintenance activities Environment Asset 40 facilities > 350.000 pieces of 3 industries equipment Data model 10.000 km wirering ntenance process Action/Task Failures 350.000 Orders 49.000 reported failures 1.400.000 tasks 05-12-2022

Configurator

What do we mean by clustering?

Case Dan F November 2020

Savings

3.4% of remaining work hours

3.3% of operations

Group	Order type	Revision	Functional Location	Order	Activity Object description	Remaining work [h]	Work center	Earliest start date	LAFD
20	WDF	DAN NE	DF /B /75/DFBA-PM-3921	2100023951	10 L3 Isolate PM-3921 + P-3921	4	PRODTECH	07-12-2020	17-03-2018
					20 L3 Replace the systems pulsation damper	3	MTN-MECH	07-12-2020	17-03-2018
					30 L3 Dismantle P-3921	3	MTN-MECH	07-12-2020	17-03-2018
					40 L3 Dismantle PM-3921	3	MTN-ELEC	07-12-2020	17-03-2018
					50 L2 Install P-3921	3	MTN-MECH	07-12-2020	17-03-2018
					60 L2 Install PM-3921	3	MTN-ELEC	07-12-2020	17-03-2018
					- 70 L3 De Isolate PM 3021 + P 3021	2	PRODTECH	08 12 2020	17 03 2018
					80 L3 Test of equipment	1	MTN-MECH	08-12-2020	17-03-2018
			DF /B /75/DFBA-P-3921	2100024104	- 10 L3 Isolation of demul pump	3	PRODTECH	21 12 2020	27 03 2019
					20 L2 Replace demulsifier pump	0	MTN-MECH	21-12-2020	27-03-2019
					30 L3 De-Isolation/test demul pump	3	PRODTECH	21-12-2020	27-03-2019

The timing of the decision

Proposed computer algorithm

How the maintenance scheduling algorithm works

Data model Data model - OneView of maintenance activities Environment Asset 40 facilities > 350.000 pieces of 3 industries equipment Data model 10.000 km wirering ntenance process Action/Task Failures 350.000 Orders 49.000 reported failures 1.400.000 tasks 05-12-2022

Configurator

General requirements for scheduling maintenance jobs

a) Management of resource allocation (limited to maximum capacity)	Sing Day 1 Day 2 Day 3 Days Capacity WC3 WC2 WC1	e) Management of start date	Work 1 EASD Work 2 Work 2	
b) Management of offshore resources on board (limited to maximum capacity)	POB allowed POB wc3 wc2 wc1 Days	f) Management of material	$\rightarrow \qquad \qquad$	
c) Management of risk for delaying the maintenance work	Work 1 – Priority 2 Work 2 – Priority 3 LAFD Work 3 – Priority 5 Work 3 – Priority 5	g) Grouping of similar works	Work 1 Work 2 Work 3 Work 4 Work 5	
d) Management of dependencies among operations	Opr. 010 FS Opr. 020 SS Opr. 030 FS Opr. 040 FS Opr. 040 Opr. 050	Legend WC = Work Center POB = People on board LAFD = Latest allowable finish date Opr. = Operation SS = Start – Start relation (Preceding operation starts with the succeeding operation) FS = Finish – Start relation (Succeeding operation starts when the preceeding is finished) EASD = Earliest allowable start date		

The Team

Meet us at the Meeting Place

