SEEP

Seabed conditions for platform abandonment

Seabed baseline conditions for platform abandonment

Lasse Tésik Prins¹, Paul Knutz¹, Bodil W. Lauridsen² , Ole Rønø Clausen³, Katrine Juul Andresen³ and Hans Røy⁴

> ¹Marine Geology Department, GEUS ²Department of Geoenergy and –storage, GEUS ³Department of Geoscience, University of Aarhus ⁴Department of Biology, Microbiology University of Aarhus

DTU Offshore Danish Offshore Technology Centre

Motivation

- Drilling and HC production changes the fluid dynamics in the overburden
- HC Wells may leak methane to the seafloor, but there is natural seepage that disturbs the image
- Distinguishing between anthropogenic and natural seepage is critical in relation to abandonment

Vielstädte et al. 2017 (EST)

Building a <u>SEabed Environmental baseline for</u> <u>Platform abandonment - SEEP</u>

- Baseline conditions A geological model
 - Pre-production outside the central graben
 - Syn/post-production within the central graben
- Focus on methane seepage
 - Thermogenic or biogenic
 - Production related or natural occurrence
 - Identification of fluid migration paths

Shallow subsurface

- Highly heterogenous
- Sedimentation controlled by rapidly changing climate and sea levels
- Contains potential geohazards
- May facilitate or inhibit natural methane leakage

Data from the Danish Central Graben area

Geophysical Data – Cruise March and June

- Multibeam Bathymetry
 - Seabed morphology
 - Identification of gas seeps
- Sub-bottom Profiler
 - Holocene geology
 - Shallow gas
- Ultra-high resolution Seismic
 - Quaternary stratigraphy and geomorphology
 - Fluid migration paths
 - Neotectonic activity
- Vintage industry seismic
 - Mapping potential pathways and shallow gas in the overburden

Examples of seismic data

Sub-bottom Profiler data

Examples of seismic data

UHR-Seismic data

Examples of seismic data

Vintage deep seismic data

Holocene Unit - two examples

- Transparent
- High amplitude at the base

- Erosive base transgression
- Internal structure masked by seabed pulse

Innomar Data

UHR sparker data

Seismic facies from units immedeatly beneath the holocene unit

Well stratified, subparrallel reflections

Local channel infill, parrallel reflections Varying intesity

Shingled reflections downlap, good reflection continuity

Examples of seismic data

Vintage deep seismic data

Gas expression on MBES

- Cirkular depression on the seafloor
- Signal disturbance on seismic data
- Possible pockmark formation
 - Depressions caused by fluidization and erosion of seabed sediment due to gas venting

Sediment, microbial and faunal data

Seabed sediment and faunal analysis

- Grab samples
- Vibrocores

Sediments Chemistry

05.0

 Faunal and microbial respons

- Facies analysis of the sediment cores
- Dating of cores sediments
 - Pb-210
 - Ce-137 (peak 1963 to 64 and 1986)
 - C-14
- Faunal variations in the sediment cores
- Benthic shell geochemistry of bivalves and live/dead foraminifera (trace elements and stable isotopes)

ADUARI

- Studies of the microbial communities and gas type
- Environmental impacts on oilproduction

Examples of Valdemar-3; production

Intepretations of geological ages and depositional environments

Prins and Andresen, 2019

Microbes and gases

What gasses are there? How much? What is the isotopic composition? Which gas-eating bacteria are present and how many?

What is the pattern in pristine seabed, natural seeps, and exploration sites?

Possible questions which can be answered based on the data:

- Characterization of the gas/methan seep
- ✓ Natural or anthropogenic?
- ✓ How often do we see seeps?
- ✓ What is the role/influence of gas in the environment?
- ✓ Are there any playback mechanisms?
- ✓ Migration pathways?

Thanks to: The crew on Aurora and SIMA Danish Offshore Technology Centre TOTAL